Jump to content

yiLAlhT.png

 

German Leopard 1 MBT

 

bdMrsgv.png

 

Development and Industry

 

Following German surrender in 1945 the Wehrmacht was dissolved, Germany was removed of her armament industry, its design teams were dispersed, and anything civilian that could support them; security of Germany as a whole rested solely in the four Allied Powers. The Federal Republic of Germany was founded on May 23rd 1949, and any military plans forbidden by Allied regulations, however the Americans eventually called for West German accession into NATO and rearmament, originally opposed by France, but after the European Defense Community failed in 1954 they accepted the accession, and following an amendment of the Basic Law in 1955, West Germany became a member of NATO.

 

Ne0Rj6e.png

            The Bundeswehr was officially established on the 200th birthday of Gerhard von Scharnhorst, 12 November 1955. As such as being succeeded into NATO and their own arms industry having been dismantled, their equipment had to be obtained from sources other than their own. A selection of vehicles from the era included either the American M47 (standardized in 1952), (which is the only Patton series tank that never saw Combat in U.S. service despite being used widely by NATO and SEATO countries) and eventually the upgraded M48 (introduced in 1953), or the British Centurion (introduced in 1945); economic and political considerations won the Patton series favourability, and the Bundeswehr received 1,120 M47’s, and following training of German crews in these new tanks; showing that they did not suit tactical applications of their army, the Germans saw an opportunity to rebuild their armament industry as they had no desire to buy the following M60 tanks, eventually coming to an agreement with the nations France and Italy to work in conjunction on producing a new Europanzer, agreeing for production to begin mid 1960’s.

 

 

            Several new trains of thought in armoured warfare had begun to become common thought, views shared by the French and Germans were beliefs that the power of modern ballistics and anti-tank weapons had outrun the effective defensive properties of armour. As such the most major specifications of the new vehicle were requested as such to being fast and highly mobile (which forwent armour in favour of a lighter vehicle), carrying a gun capable of defeating 150mm of armour at 30 degrees with a maximum effective range of 2,500m, a combat weight of 30 tonnes, and two machine guns, a maximum height of 2.20m (7 ft 3in/ a rather small vehicle), either a torsion bar or air-hydraulic suspension system, and a ground pressure of 0.85kg/sq cm. 

qJjWiB3.png

            Two vehicles from each industrial group were ordered (First Generation). German; one consortia was Porsche constituting Team A submitting two designs in 1961:

·         “A-1” [723]

·         “A-2” [773]

Ruhrstahl constituting Team B submitting the following designs 8 months later:

·         “B-1” [TI]

·         “B-2” [TII]

 

Contenders:

The other industrial group, The French Atelier de Construction d’Issy-les-Moulineaux achieved successful margins in their AMX-13 and focused all efforts into the one vehicle design, the AMX-30. Eventually technical and political differences began to emerge, ultimately leading the French to produce their own tank based on the AMX-30 and equipped with a French designed 105mm gun instead of the British semi-automatic L7 the Germans had opted to use, and the Italians later backed out of the Europanzer project and opted to buy the M60.

 

Spoiler

9XCVtsC.jpg

 

 

Philosophy:

Over all the armour only needed to be able to defeat conventional Kinetic Energy Projectiles up to 20mm in caliber. All four German designs used a Rheinmetall developed turret, and Daimler Benz 838 diesel engine (with reduced fire hazard proportional to gasoline), fire extinguisher system; as well all four gun carriages were initially armed with the Rheinmetall 90mm. The A models sported a torsion bar suspension system with 7 road wheels, while the B models used an air-hydraulic suspension system with 6 road wheels. Both A models had risen to a vehicle weight of 35ton, while the B models complied with weight specifications. Comparative trials occurred at the Bundeswehr Proving Group near Trier in January 1961, and the A models were judged to be superior in lines that they were based on more traditional concepts, were less expensive and better suited for speedy production. And during this time the Rheinmetall 90mm had been replaced by a 105mm Rheinmetall weapon, (of which two 105mm guns were tried, the Rheinmetall and British L7A1 which was later developed into the L7A3.)

 

The A-2 model, now called the Porsche Standardpanzer, was ordered to a quantity of 26, (known as the 2nd Generation). As they were produced several improvements and modifications had been made to the line of vehicles. They were 100mm wider and had greater armour protection, a somewhat better suspension system and fire control system. The 600hp eight cylinder engine was replaced by an 830hp 10 cylinder motor and the transmission improved, however the engine and transmission were found not to be completely suitable, and wasn’t effective until better cooling systems and lubrication were developed, as well as replacing the coupling. The turret was redesigned to accommodate the 105mm L7 to be depressed at -9 degrees, which consequently altered the center of gravity of the vehicle; and was also replaced by the Vickers L7 designed in Britain (at the time the most advanced tank gun in existence).

 

Trials:

Testing of these prototypes began in Meppen 1961; over all multiple things were ascertained, the chassis needed improvement, the engine and air intake system needed to be modified, as well as changes to the steering gear and braking system, hatches, air cleaners, fighting compartment, heating, cooling, and aeration system (aeration system of which was especially important for the accommodation to guarantee the crew safe compartmentalization within the unit during 24 hour periods of time, as well as specified NBC or Nuclear, Biological and Chemical requirements).

  • The B models were discontinued in 1962;

During the latter half of 1962 1,500 L7A3 guns were ordered for those Panzers built and to-be mass produced, this weapon which had been specifically designed for use on the British Centurion and American M60 meant that this would largely aid in the standardization of ammunition within NATO. The L7A3 consisted of 28 grooves and a bore evacuator center tube. The high rate of fire, up to 10 rounds a minute; can be attributed to the semi automatic, horizontal sliding breech block which opens automatically after a round has been fired and then closes automatically after a round has been loaded. The accuracy of this weapon has been shown to put 99 out of 100 rounds into the turret of a tank at 1,000m, with a 98% hit rate at 2,000m.

 

t4yOY3r.png

 

The type of Ammunition the Leopard Loaded:

  • APDS
  • HEATFS
  • HESH/ HEP
  • Smoke.

t8HQtQU.png

 

Below the grooves of the bore rifled gun:

Spoiler

tWEnwYC.jpg

 

 

The APDS is capable of long distance effective and accurate marks. The HEAT is capable of defeating the armour of any tank in service. And the HESH are multi-purpose hard/soft target destroyers.

The way the ammunition stowage was situated within the tank was 13 rounds ready in the turret, 42 additional stored throughout the compartment.

 

In 1962 testing of the new turrets began with engineering and running trials, and again many things were determined, the turret, the gun, the optical equipment were not fit for mass production, the gun mounting did not withstand stress while being driven high speed cross country, the recoil and recuperator mechanism showed considerable deviation in target patterns between the varying muzzle velocities of firing the three main types of ammunition, APDS, HEAT, and HESH. The machine gun was not effective for ranging as it was only effective up to 1,800m, and no current range finders were capable of accuracy at 2,500m and neither did the commanders telescope; a new optical range finder was developed incredibly quickly, this basic coincidence range finder replaced the machine gun but necessitated modifications to the turret in raising it.

 

Sanctioned manufacture of 50 Pre-production tanks code tagged Model 814 (0-Series) began manufacture in early 1963 before the trials ended. Arduous tests were conducted in mud, sand, on steep slopes, ditch crossing, fording and submerged trials, all of which were highly successful if not impeccable. The behaviour of the tanks were tested in cold weather/ low temperatures in snow and ice and concluded satisfactory in 1962/1963.

 

October 1962 the Standardpanzer competed in staged trials against the French AMX-30, focusing on such things as: 250km road test, Five-hour cross-country run to be completed with no breakdown in the shortest possible time. The Standardpanzer achieved an average cruising speed of 60.8km/hr in the road test while the AMX-30 achieved 50km/hr. The Standardpanzer performed at 24km/hr in the cross country. Again in 1963 the two prototypes competed starting on the 16th of September, testing as follows: 5 tanks each, 300km run, all tanks taking part. One French tank and one German tank broke down due to engine failure. The next trial was a two day performance test under simulated battle conditions which both were considered roughly equal. And engineering trials mirroring those conducted in 1962 were repeated, except the test was 100km instead of 250km, and it was ran half petrol and half diesel respectively, both again performed equally. On the 1st of October, the Standardpanzer was officially renamed to the Leopard, of which it would continue to be called until be constituted Leopard 1 to differentiate it from the Leopard 2. Despite being heavier, 40tons to 36 tons, the Leopard performed better in cross country, could move 10% quicker on roads, and had 18% greater acceleration than the French design.

 

France was not prepared to accept conclusions that their tank had rated marginally inferior and their defense posture meant that they could not even begin to afford to buy tanks until 1965; they decided not to follow through with joint development on the Europanzer and instead decided to work solely on their AMX-30. By now Germany was set in stone, and was prepared to replace their aging M47’s with the new Leopards through the allocated defense budget in 1964.

 

As France backed out Italy too looked at how they would replace their aging M47’s, and looked to the Leopard. 2 Pre-production Standardpanzer were tested for trials at Cape Teluda, and put through trials that determined the behaviour of the vehicle while driving and firing in high temperatures and rough terrain, which showed the optical equipment, gun and machine guns, the power train unit, the suspension and the cooling system were all capable of standing up in these high temperature conditions, and that the crew compartment ventilation systems were shown to be efficient in the dusty environment.

Spoiler

We2SaQC.png

 

 

The core component of the fire control system is TEM 1A or 2 A range-finder, with a x16 magnification serving the gunner as range finding and targeting using stereoscoping principles. The ability for this vehicle to fight at night is based on illumination, using a white search light or infrared to illuminate the target, the gunner can then proceed to engage.

 

 

  • The engine and transmission of this vehicle are located in the rear. 

 

The engine; MTU MB 838 CaM 500, 10-cylinder 90°V-type supercharged diesel engine, 37.4 litres, multifuel engine capable of running either diesel F-54 or Jet fuel F-40. This liquid cooled motor utilized a dry sump system ensuring proper circulation even at various angles of inclination; this system uses additional pumps and a secondary reservoir for oil, as compared to a conventional wet sump system, which uses only the main sump, (US Oil Pan) below the engine and a single pump Capable of 2,200rev/min putting out 830hp, A fuel capacity of 985 litres giving a range of some 600km.

 

The transmission has four forward and two reverse speeds equipped with a hydraulic torque converter, electro-hydraulic gear changing and a bypass clutch, allowing the driver to change gear rapidly and easily even while moving over difficult terrain. Aiding in the speed and mobility of the Leopard is provided by two gear shift positions for forward travel; 'forward-cross-country' and 'forward.' In the 'forward-cross-country' position the torque converter is connected in the first three gears depending on the vehicles speed, this allows the driver to overcome small obstacles without having to shift so there is no risk of stalling the engine. In the 'forward' position the torque converter is connected only in the first gear, the clutch being operated when the other gears are shifted, this increases efficiency and saves in fuel. 

 

The vehicle is steered by a two-radii cross steering transmission, this together with the shift transmission, fan drive and summation gears, is installed in a common gear housing and actuated mechanically and hydraulically. The large steering radius is designed for high speeds on roads, and if the driver turns the steering handle beyond a pressure point of the large radius the small gear-dependent fixed radius is brought into action giving the vehicle tremendous maneuverability, especially on cross country terrain. The vehicle can turn almost entirely within its own length. The Leopard  can be driven from two different positions, within the forward front position of the hull, as well as within a portion of the turret, usually utilized during fording. 

Spoiler

7MXiq1q.png

 

 

As the Leopard finally began whole production, more than 2,700 different firms and companies were utilized in coordination and involved in the production and assembly of parts. Each part is individually tested by separate firms, and then tested again in complete assembled form. The first Leopard to be completed left the assembly line on the 9th of September 1965; by the end of 1965 about 600 Leopards had been produced, with about 50 coming off of Krauss Maffei’s assembly line every month.

 

  • April 1965 - 2 Pre-production Standardpanzers were tested at the Belgian Armoured Warfare School.
  • December 1965 – February 1966 A series of cold weather and snow trials were conducted at Camp Shilo.
  • January 1966 - 2 Pre-production Leopards were sent to Britain in exchange for 2 Cheiftains for comparative trials.
  • October 1966 – For one year the Norwegian army conducted a series of trials in Trandum and Snoeheim.
  • December 1967 – May 1968 The Dutch Army tested two Leopards and two Chieftains at Amersfoort
  • Belgium ordered 334 in December 1967,
  • Norway ordered 78 in November 1968,
  • December 1968 the Netherlands ordered 415(increased to 468),
  • 1969 Italy ordered 200.  
  • In 1974 Denmark equipped their armies with 120;
  • 1976 Canada bought 114 1A3’s, and after comparative trials with the Leopard and the American M60A1 Australia ordered 90 1A3’s through 1977-1978.
  • Meanwhile the Bundeswehr had increased their own demands from 1,500 to 2,187 in 1972, and 2,437 in 1974; of 4,561 orders 4,171 were produced.

 

Spoiler

NwsXpwO.png

 

 

From 1965 to 1970 4 different batches were produced, the changes between these batches are almost considered negligible:

  • 1st Batch: [400 tanks from 1965 to 1966] Square shaped infantry telephone box. Unprotected cylindrical shock absorbers, (the only batch mounting unprotected shock absorbers).
  • 2nd Batch: [600 tanks from July 1966 to July 1967] Circular shaped infantry telephone box and protected shock absorbers. A ballistic ring added in the 9 to 3 o’clock position of the turret ring. The turret received a drain against rain water.
  • 3rd Batch: [500 tanks from July 1967 to August 1968] New brake with ventilated disks. Externally: Lifting lugs.
  • 4th Batch: [345 tanks from August 1968 to February 1970] No longer shows the vertical separation of the exhaust grill arrangement.

The crew consists of 4 members, commander, driver, loader and gunner, the driver to the front and the other 3 in the turret. Two sets of 4 smoke dischargers would sit on either side of the turret. There are 14 periscopes, 8 for the commander, 3 for the driver, 2 for the loader, and 1 for the gunner. The hull of the Leopard is fabricated from welded steel plates while the turret is cast one piece. Special camouflage paint protects against detection by infra-red sighting devices at night, and protection against heat detection is provided by mixing the exhaust gases with air and so reducing their temperature.

 

Leopard A1 – A2 – A3

 

  • Leopard 1A1:

The first upgrades began from 1972 onwards; the upgrade A1 included gun stabilization system (WaSta), Thermal sleeve, side skirts, and on board fording equipment. Secondarily snow grousers stowed on the glacias plate. The weapon stabilization was the most important installation measure of this modification which improved the ability of the vehicle to perform a firing-stop reducing time between the stop and target engagement, concluded in 1974. The thermal sleeve increased hit probability by eliminating temperature variations on the barrel through weather conditions. The side skirts aid in protection against hollow charges. It is difficult if not impossible to distinguish these vehicles apart visually externally.

1A1’s retrofitted with spaced armour to the turret have become Leopard 1A1A1; of which this modification was not made to any 1A2. 9/10/16 Dev Blog.

 

 

  • Leopard 1A2: 5th batch cast turret.

The first four batches concluded. The 5th batch followed in April 1972. This batch consisted 2 different parts, of which the first with 232 vehicles has been delivered with a cast turret, receiving the designation A2 too. All of the upgraded features on the A1 were incorporated into the A2 from the start. The main measure of the A2 was the thickened armour of the cast turret. Longer 5 metre towing ropes were added, and a new (BiV) image intensification device for the driver was added. Newer smaller air filters for the engine were fitted. The turret is heavier; however it is still difficult to distinguish the A2 with that of the completely upgraded A1.

 

  • Leopard 1A3: 5th batch welded turret.

Blohm and Voss developed a new turret design; approximately two-thirds of the 5th batch were delivered with cast turrets, succeeded by 110 vehicles with welded turrets incorporating spaced armour as 1A3 in 1973. Both periscopes of the driver were replaced by a single one with tilt and traverse features. 

 

Crew: 4

Weight:

  • Leopard 1: 40 tonnes
  • Leopard 1A1A1 and later: 42 tonnes.

Length: 9.54m

Width: 3.37m

Height: 2.61m

Speed: 65km/h

Range: 600km

 

Armour

 

Hull

  • Front: 70mm
  • Side upper: 35mm
  • Side lower: 25mm
  • Top 10mm
  • Rear: 25mm
  • Floor: 15mm

Turret

  • Front: 52mm
  • Mantlet: 60mm
  • Sides: 60mm
  • Rear: 60mm

 

 

Notable Vehicles of the Era:

 

Spoiler

M47 Patton
M48 Patton
M60 Patton
Centurion
Chieftan
T54
T55

T62
AMX-30
Type 74 Nana Yon

 

K8bisHy.png

.

The information provided includes specifications of vehicles up to 1A3; as models will probably not supersede this.

 

Notable vehicles: Centurion

Edited by Heliosiah
Reformatting due to forum update incompatibilities.

Carrier_ (Posted )

Thread pined o7
  • Upvote 25
medal medal medal

Share this post


Link to post
Share on other sites

very nice and informative post, looking forward to this one in game ^^

  • Upvote 3
medal medal medal medal medal medal medal medal medal

Share this post


Link to post
Share on other sites

With way less RoF if i guess correctly. ^^

  • Upvote 1
medal medal

Share this post


Link to post
Share on other sites

I know from ex Leo 1 Tankers they made an average 8-9 rpm and with good (ingame Aced) loaders 12 rpm. We will see.......but i dont have high hopes, because the Leo will rely heavily on speed and RoF to be successfull.

medal medal

Share this post


Link to post
Share on other sites

I know from ex Leo 1 Tankers they made an average 8-9 rpm and with good (ingame Aced) loaders 12 rpm. We will see.......but i dont have high hopes, because the Leo will rely heavily on speed and RoF to be successfull.

Thats fast enough

medal medal medal

Share this post


Link to post
Share on other sites

very nice and informative post, looking forward to this one in game ^^

not

 

How well will Leopard 1 aim on the move in comparison to other current vehicles like T-54?

Cannot say. But the version of Leo 1 we want to introduce into game is without gun stabilizer.

 

:facepalm:

  • Upvote 1
medal medal medal medal

Share this post


Link to post
Share on other sites

NIce post good info. But I am afraid of what Gaijins version of the Leopard will be like.

 

 

Prototype, without stabilizer, just the first Leo :(

Edited by Alberto_X
medal

Share this post


Link to post
Share on other sites

not

 

How well will Leopard 1 aim on the move in comparison to other current vehicles like T-54?

Cannot say. But the version of Leo 1 we want to introduce into game is without gun stabilizer.

 

:facepalm:

what does this have to do with my post?

  • Upvote 1
medal medal medal medal medal medal medal medal medal

Share this post


Link to post
Share on other sites

that there is no point for grinding

well, I disagree with that, I don't care how it performs, it's a cool vehicle to me 

  • Upvote 2
medal medal medal medal medal medal medal medal medal

Share this post


Link to post
Share on other sites

Current Panther has a stabiliser ingame (yes, just stop acceleration and you can aim perfectly, like standing still, while going 30-40km/h).

 

Maybe the Leo will have the same thing :DDD

medal medal medal

Share this post


Link to post
Share on other sites

Are we getting and APFSDS round or no?

 

If the Chieftain gets added as the British top tank than maybe.

 

But otherwise the German equivalent of the M392A1 APDS is going to be the AP round this tank gets.

Edited by Phaere
medal medal medal

Share this post


Link to post
Share on other sites

Current Panther has a stabiliser ingame (yes, just stop acceleration and you can aim perfectly, like standing still, while going 30-40km/h).

 

Maybe the Leo will have the same thing :DDD

I see possibly as they add an early early version of the Leopard, that we will get other versions later on. As over all, the modifications of these vehicles weren't that determinant as were the crew, and who ever saw first. They continued to add modifications of the T-54 line, and are manipulating the br and positioning of late-tier German Panthers right now. Depending on the performance of the early-Leopard against the in game M47, late T-54's, and tanks that are to be added in the future, British: Centurion. Japanese, the Type 74 Nana-Yon. American M48 or M60. While I've seen the T-62 denied in other sources, I've seen some which show they have consideration for adding early or original serial T-62 (so maybe) They might add one with the Stabilizer, eventually, but initially I doubt it.

 

And remember things like the Su-122-54 and its ammunition load out. 

 

The Centurion to be added will be also one with a 105mm cannon. 

 

Центурион со 105мм орудием. Конкретная модификация еще обсуждается.

- BVV

 

 

 Я пока не могу сказать. Но тот вариант лео-1 что мы делаем, без стабилизатора.

-BVV

 

1.В любом случае это начало 70ых годов. И пока рано говорить, сначало будет просто Лео-1.

2. Ну значит будет со стабилизатором. Но если он и будет, то после новых топов США и Германии.

-BVV

Edited by Heliosiah
medal medal medal

Share this post


Link to post
Share on other sites

On this model at least, we can see the barrel bore evacuator, infrared searchlight, and smoke dischargers.

medal medal medal

Share this post


Link to post
Share on other sites

heh. Ill be making targets before I become a target, dont you worry ;) M103, more like free xp trolool

medal medal medal

Share this post


Link to post
Share on other sites

 Share

  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...